Relations and Functions

Short Answer Type Questions

Q. 1 Let $A = \{a, b, c\}$ and the relation R be defined on A as follows $R = \{(a, a), (b, c), (a, b)\}$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

- Sol. Given relation, R = {(a, a), (b, c), (a, b)}.
 To make R is reflexive we must add (b, b) and (c, c) to R. Also, to make R is transitive we must add (a, c) to R.
 So, minimum number of ordered pair is to be added are (b, b), (c, c), (a, c).
- **Q. 2** Let *D* be the domain of the real valued function *f* defined by $f(x) = \sqrt{25 x^2}$. Then, write *D*.
- **Sol.** Given function is, $f(x) = \sqrt{25 x^2}$ For real valued of f(x) $25 x^2 \ge 0$ $x^2 \le 25$ $-5 \le x \le + 5$ D = [-5, 5]
- **Q. 3** If f, $g: R \to R$ be defined by f(x) = 2x + 1 and $g(x) = x^2 2$, $\forall x \in R$, respectively. Then, find $g \circ f$.
 - Thinking Process

If $f, g: R \to R$ be two functions, then $gof(x) = g \{f(x)\} \forall x \in R$.

Sol. Given that,
$$f(x) = 2x + 1$$
 and $g(x) = x^2 - 2$, $\forall x \in R$
 \therefore $gof = g\{f(x)\}$
 $= g(2x + 1) = (2x + 1)^2 - 2$
 $= 4x^2 + 4x + 1 - 2$
 $= 4x^2 + 4x - 1$

Q. 4 Let $f: R \to R$ be the function defined by f(x) = 2x - 3, $\forall x \in R$. Write f^{-1} .

Sol. Given that,
Now, let
$$f(x) = 2x - 3, \forall x \in \mathbb{R}$$

$$y = 2x - 3$$

$$2x = y + 3$$

$$x = \frac{y + 3}{2}$$

$$f^{-1}(x) = \frac{x + 3}{2}$$

Q. 5 If $A = \{a, b, c, d\}$ and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .

Sol. Given that,
$$A = \{a, b, c, d\}$$
 and $f = \{(a, b), (b, d), (c, a), (d, c)\}$ $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}$

Q. 6 If $f: R \to R$ is defined by $f(x) = x^2 - 3x + 2$, write $f\{f(x)\}$.

• Thinking Process

To solve this problem use the formula i.e., $(a+b+c)^2 = (a^2+b^2+c^2+2ab+2bc+2ca)$

Sol. Given that,
$$f(x) = x^2 - 3x + 2$$

$$f\{f(x)\} = f(x^2 - 3x + 2)$$

$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$

$$= x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2 - 3x^2 + 9x - 6 + 2$$

$$= x^4 + 10x^2 - 6x^3 - 3x$$

$$f\{f(x)\} = x^4 - 6x^3 + 10x^2 - 3x$$

Q. 7 Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $q(x) = \alpha x + \beta$, then what value should be assigned to α and β ?

Sol. Given that, $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}.$

Here, each element of domain has unique image. So, g is a function.

Now given that,
$$g(x) = \alpha x + \beta$$

$$g(1) = \alpha + \beta$$

$$\alpha + \beta = 1$$
 ...(i)
$$g(2) = 2\alpha + \beta$$

$$2\alpha + \beta = 3$$
 ...(ii) From Eqs. (i) and (ii),

$$2(1-\beta) + \beta = 3$$

$$\Rightarrow 2 - 2\beta + \beta = 3$$

$$\Rightarrow 2 - \beta = 3$$

$$\beta = -1$$
 If
$$\beta = -1, \text{ then } \alpha = 2$$

$$\alpha = 2, \beta = -1$$

- \mathbf{Q} $\mathbf{8}$ Are the following set of ordered pairs functions? If so examine whether the mapping is injective or surjective.
 - (i) $\{(x, y) : x \text{ is a person, } y \text{ is the mother of } x\}$.
 - (ii) $\{(a, b) : a \text{ is a person}, b \text{ is an ancestor of } a\}$.
- **Sol.** (i) Given set of ordered pair is $\{(x, y) : x \text{ is a person, } y \text{ is the mother of } x\}$. It represent a function. Here, the image of distinct elements of x under f are not distinct, so it is not a injective but it is a surjective.
 - (ii) Set of ordered pairs = $\{(a, b) : a \text{ is a person}, b \text{ is an ancestor of } a\}$ Here, each element of domain does not have a unique image. So, it does not represent function.
- \mathbf{Q} . **9** If the mappings f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}, \text{ write } fog.$
- **Sol.** Given that, $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$ Now, $fog(2) = f\{g(2)\} = f(3) = 5$ $fog(5) = f{g(5)} = f(1) = 2$ $fog(1) = f{g(1)} = f(3) = 5$ $fog = \{(2, 5), (5, 2), (1, 5)\}$
- \mathbf{Q} . 10 Let C be the set of complex numbers. Prove that the mapping $f: \mathcal{C} \to R$ given by $f(z) = |z|, \forall z \in \mathcal{C}$, is neither one-one nor onto.
- **Sol.** The mapping $f:C \to R$ Given. $f(z) = |z|, \forall z \in C$ f(1) = |1| = 1f(-1) = |-1| = 1f(1) = f(-1)But $1 \neq -1$

So, f(z) is not one-one. Also, f(z) is not onto as there is no pre-image for any negative element of R under the mapping f(z).

- **Q.** 11 Let the function $f: R \to R$ be defined by $f(x) = \cos x$, $\forall x \in R$. Show that f is neither one-one nor onto.
- **Sol.** Given function, $f(x) = \cos x$, $\forall x \in R$ $f\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$ Now, $f\left(\frac{-\pi}{2}\right) = \cos\frac{\pi}{2} = 0$ $f\left(\frac{\pi}{2}\right) = f\left(\frac{-\pi}{2}\right)$ But

So, f(x) is not one-one.

Now, $f(x) = \cos x$, $\forall x \in R$ is not onto as there is no pre-image for any real number. Which does not belonging to the intervals [-1, 1], the range of $\cos x$.

Q. 12 Let $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not.

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$
 (ii) $g = \{(1, 4), (2, 4), (3, 4)\}$ (iii) $h = \{(1, 4), (2, 5), (3, 5)\}$ (iv) $h = \{(1, 4), (2, 5)\}$

Sol. Given that,
$$X = \{1, 2, 3\}$$
 and $Y = \{4, 5\}$ $X \times Y = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$

(i) $f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$ f is not a function because f has not unique image.

(ii)
$$g = \{(1, 4), (2, 4), (3, 4)\}$$

Since, g is a function as each element of the domain has unique image.

(iii)
$$h = \{(1, 4), (2, 5), (3, 5)\}$$

It is clear that *h* is a function.

(iv)
$$k = \{(1, 4), (2, 5)\}$$

k is not a function as 3 has not any image under the mapping.

Q. 13 If functions $f: A \to B$ and $g: B \to A$ satisfy $gof = I_A$, then show that f is one-one and g is onto.

Sol. Given that,

Q. 14 Let $f: R \to R$ be the function defined by $f(x) = \frac{1}{2 - \cos x}$, $\forall x \in R$. Then, find the range of f.

• Thinking Process

Range of $f = \{y \in Y : y = f(x) : for some in x\}$ and use range of $\cos x$ is [-1,1]

Sol. Given function,
$$f(x) = \frac{1}{2 - \cos x}, \forall x \in R$$

Let
$$y = \frac{1}{2 - \cos x}$$

$$\Rightarrow 2y - y \cos x = 1$$

$$\Rightarrow y \cos x = 2y - 1$$

$$\Rightarrow \cos x = \frac{2y - 1}{y} = 2 - \frac{1}{y} \Rightarrow \cos x = 2 - \frac{1}{y}$$

$$\Rightarrow -1 \le \cos x \le 1 \Rightarrow -1 \le 2 - \frac{1}{y} \le 1$$

$$\Rightarrow -3 \le -\frac{1}{y} \le -1 \Rightarrow 1 \le \frac{1}{y} \le 3$$

$$\Rightarrow \frac{1}{3} \le \frac{1}{y} \le 1$$

So, y range is $\left[\frac{1}{3}, 1\right]$.

- \mathbf{Q} . 15 Let n be a fixed positive integer. Define a relation R in Z as follows $\forall a$, $b \in \mathbb{Z}$, aRb if and only if a - b is divisible by n. Show that R is an equivalence relation.
- **Sol.** Given that, $\forall a, b \in Z$, aRb if and only if a b is divisible by n.
 - I. Reflexive

 $aRa \Rightarrow (a - a)$ is divisible by n, which is true for any integer a as 'O' is divisible by n. Hence, R is reflexive.

II. Symmetric

$$aRb$$
 $\Rightarrow \qquad \qquad a - b \text{ is divisible by } n.$
 $\Rightarrow \qquad \qquad -b + a \text{ is divisible by } n.$
 $\Rightarrow \qquad \qquad -(b - a) \text{ is divisible by } n.$
 $\Rightarrow \qquad \qquad (b - a) \text{ is divisible by } n.$
 $\Rightarrow \qquad \qquad bRa$

Hence, R is symmetric.

III. Transitive

Let aRb and bRc

$$\Rightarrow \qquad (a-b) \text{ is divisible by } n \text{ and } (b-c) \text{ is divisible by } n$$

$$\Rightarrow \qquad (a-b) + (b-c) \text{ is divisibly by } n$$

$$\Rightarrow \qquad (a-c) \text{ is divisible by } n$$

$$\Rightarrow \qquad aRc$$

Hence, R is transitive.

So. R is an equivalence relation.

Long Answer Type Questions

- $\mathbf{Q} \cdot \mathbf{16}$ If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being
 - (i) reflexive, transitive but not symmetric.
 - (ii) symmetric but neither reflexive nor transitive.
 - (iii) reflexive, symmetric and transitive.

Sol. Given that,
$$A = \{1, 2, 3, 4\}$$

(i) Let
$$R_1 = \{(1, 1), (1, 2), (2, 3), (2, 2), (1, 3), (3, 3)\}$$

 R_1 is reflexive, since, (1, 1) (2, 2) (3, 3) lie in R_1 . $(1, 2) \in R_1, (2, 3) \in R_1 \implies (1, 3) \in R_1$

Hence, R_1 is also transitive but $(1, 2) \in R_1 \Rightarrow (2, 1) \notin R_1$.

So, it is not symmetric.

(ii) Let
$$R_2 = \{(1,2), (2,1)\}$$
 Now,
$$(1,2) \in R_2, (2,1) \in R_2$$

So, it is symmetric.

(iii) Let
$$R_3 = \{(1,2), (2,1), (1,1), (2,2), (3,3), (1,3), (3,1), (2,3)\}$$

Hence, R_3 is reflexive, symmetric and transitive.

- **Q. 17** Let R be relation defined on the set of natural number N as follows, $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.
- **Sol.** Given that, $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}.$ Domain $= \{1, 2, 3, ..., 20\}$ Range $= \{1, 3, 5, 7, ..., 39\}$ $R = \{(1, 39), (2, 37), (3, 35), ..., (19, 3), (20, 1)\}$ R is not reflexive as $(2, 2) \notin R$ $2 \times 2 + 2 \neq 41$ So, R is not symmetric. As $(1, 39) \in R$ but $(39, 1) \notin R$ So, R is not transitive. As $(11, 19) \in R, (19, 3) \in R$ But $(11, 3) \notin R$

Hence, R is neither reflexive, nor symmetric and nor transitive.

- **Q. 18** Given, $A = \{2, 3, 4\}$, $B = \{2, 5, 6, 7\}$. Construct an example of each of the following
 - (i) an injective mapping from A to B.
 - (ii) a mapping from A to B which is not injective.
 - (iii) a mapping from B to A.
- **Sol.** Given that, $A = \{2, 3, 4\}, B = \{2, 5, 6, 7\}$ (i) Let $f: A \to B$ denote a mapping $f = \{(x, y): y = x + 3\}$ i.e., $f = \{(2, 5), (3, -6), (4, 7)\}$, which is an injective mapping.
 - (ii) Let $g:A\to B$ denote a mapping such that $g=\{(2,2),(3,5),(4,5)\}$, which is not an injective mapping.
 - (iii) Let $h: B \to A$ denote a mapping such that $h = \{(2, 2), (5, 3), (6, 4), (7, 4)\}$, which is a mapping from B to A.
- $\mathbf{Q.}$ 19 Give an example of a map
 - (i) which is one-one but not onto.
 - (ii) which is not one-one but onto.
 - (iii) which is neither one-one nor onto.
- **Sol.** (i) Let $f: N \to N$, be a mapping defined by f(x) = 2x which is one-one.

For
$$f(x_1) = f(x_2)$$

$$\Rightarrow 2x_1 = 2x_2$$

$$x_1 = x_2$$

Further f is not onto, as for $1 \in N$, there does not exist any x in N such that f(x) = 2x + 1.

- (ii) Let $f: N \to N$, given by f(1) = f(2) = 1 and f(x) = x 1 for every x > 2 is onto but not one-one. f is not one-one as f(1) = f(2) = 1. But f is onto.
- (iii) The mapping $f: R \to R$ defined as $f(x) = x^2$, is neither one-one nor onto.

Q. 20 Let $A = R - \{3\}$, $B = R - \{1\}$. If $f : A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$,

 $\forall x \in A$. Then, show that f is bijective.

Thinking Process

A function $f: x \to y$ is said to be bijective, if f is both one-one and onto.

Sol. Given that,
$$A = R - \{3\}, B = R - \{1\}.$$

$$f: A \to B$$
 is defined by $f(x) = \frac{x-2}{x-3}, \forall x \in A$

For injectivity

Let
$$f(x_1) = f(x_2) \implies \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

$$\implies (x_1 - 2)(x_2 - 3) = (x_2 - 2)(x_1 - 3)$$

$$\implies x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$$

$$\implies -3x_1 - 2x_2 = -3x_2 - 2x_1$$

$$\implies -x_1 = -x_2 \implies x_1 = x_2$$

So, f(x) is an injective function.

For surjectivity

Let
$$y = \frac{x-2}{x-3} \implies x-2 = xy-3y$$

$$\Rightarrow x(1-y) = 2-3y \implies x = \frac{2-3y}{1-y}$$

$$\Rightarrow x = \frac{3y-2}{y-1} \in A, \forall y \in B$$
 [codomain]

So, f(x) is surjective function.

Hence, f(x) is a bijective function.

Q. 21 Let A = [-1, 1], then, discuss whether the following functions defined on A are one-one onto or bijective.

(i)
$$f(x) = \frac{x}{2}$$

(ii)
$$g(x) = |x|$$

(iii)
$$h(x) = x|x|$$

(iv)
$$k(x) = x^2$$

$$A = [-1, 1]$$

(i)
$$f(x) = \frac{x}{2}$$

Let
$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1}{2} = \frac{x_2}{2} \Rightarrow x_1 = x_2$$

So, f(x) is one-one.

$$y = \frac{x}{2}$$

$$\Rightarrow$$

$$x = 2y \notin A, \forall y \in A$$

$$y=1\in A,\, x=2\not\in A$$

So, f(x) is not onto.

Also, f(x) is not bijective as it is not onto.

(ii)
$$g(x) = |x|$$

$$g(x_1) = g(x_2)$$

$$\Rightarrow$$

$$|x_1| = |x_2| \implies x_1 = \pm x_2$$

So, g(x) is not one-one.

Now,

$$y = |x| \implies x = \pm y \notin A, \forall y \in A$$

So, g(x) is not onto, also, g(x) is not bijective.

(iii) h(x) = x|x|

$$h(x_1) = h(x_2)$$

$$\Rightarrow$$

$$|x_1||x_2|| = |x_2||x_2|| \implies |x_1| = |x_2||$$

So, h(x) is one-one.

Now, let

$$y = x|x|$$

$$\rightarrow$$

$$y = x^2 \in A, \ \forall \ x \in A$$

So, h(x) is onto also, h(x) is a bijective.

(iv)
$$k(x) = x^2$$

$$k(x_1) = k(x_2)$$

 $x_1^2 = x_2^2 \implies x_1 = \pm x_2$

Thus,
$$k(x)$$
 is not one-one.

Now, let

$$y = x^2$$

 \Rightarrow

$$x=\sqrt{y}\not\in A,\;\forall\;y\in A$$

As for y = -1, $x = \sqrt{-1} \notin A$

Hence, k(x) is neither one-one nor onto.

\mathbf{Q} . **22** Each of the following defines a relation of N

- (i) x is greater than y, x, $y \in N$.
- (ii) $x + y = 10, x, y \in N$.
- (iii) xy is square of an integer x, $y \in N$.
- (iv) $x + 4y = 10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.

Sol. (i) x is greater than y, x, $y \in N$

$$(x, x) \in R$$

For xRx

x > x is not true for any $x \in N$.

Therefore, R is not reflexive.

Let

$$(x, y) \in R \implies xRy$$

but y > x is not true for any $x, y \in N$

Thus, *R* is not symmetric.

Let

xRy and yRz

x > y and $y > z \implies x > z$

xRz

So, R is transitive.

(ii)
$$x + y = 10, x, y \in N$$

$$R = \{(x, y); x + y = 10, x, y \in \mathbb{N}\}\$$

$$R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}\ (1, 1) \notin \mathbb{R}$$

So, R is not reflexive.

$$(x, y) \in R \implies (y, x) \in R$$

Therefore, R is symmetric.

$$(1, 9) \in R, (9, 1) \in R \implies (1, 1) \notin R$$

Hence, R is not transitive.

(iii) Given xy, is square of an integer $x, y \in N$.

$$\Rightarrow R = \{(x, y) : xy \text{ is a square of an integer } x, y \in N\}$$
$$(x, x) \in R, \forall x \in N$$

As x^2 is square of an integer for any $x \in \mathbb{N}$.

Hence. R is reflexive.

If
$$(x, y) \in R \implies (y, x) \in R$$

Therefore, *R* is symmetric.

If
$$(x, y) \in R, (y, z) \in R$$

So, xy is square of an integer and yz is square of an integer.

Let $xy = m^2$ and $yz = n^2$ for some $m, n \in Z$

$$x = \frac{m^2}{y}$$
 and $z = \frac{x^2}{y}$

 $xz = \frac{m^2n^2}{v^2}$, which is square of an integer.

So, R is transitive.

(iv)
$$x + 4y = 10, x, y \in N$$

 $R = \{(x, y) : x + 4y = 10, x, y \in N\}$
 $R = \{(2, 2), (6, 1)\}$
 $(1, 1), (3, 3), ..., \notin R$

Thus, *R* is not reflexive.

$$(6, 1) \in R$$
 but $(1, 6) \notin R$

Hence, R is not symmetric.

$$(x, y) \in R \implies x + 4y = 10 \text{ but } (y, z) \in R$$

 $y + 4z = 10 \implies (x, z) \in R$

So, R is transitive.

- \mathbf{Q} . 23 Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d)if a + d = b + cfor (a, b), (c, d)in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)].
- **Sol.** Given that, $A = \{1, 2, 3, ..., 9\}$ and (a, b) R(c, d) if a + d = b + c for $(a, b) \in A \times A$ and $(c, d) \in A \times A$.

$$\Rightarrow \qquad \qquad a+b=b+a, \ \forall \ a,b\in A$$

which is true for any $a, b \in A$.

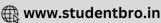
Hence, R is reflexive.

Let
$$(a, b) R (c, d)$$

$$a + d = b + c$$

$$c + b = d + a \implies (c, d) R (a, b)$$

So, R is symmetric.



Let
$$(a, b) R (c, d)$$
 and $(c, d) R (e, f)$
 $a + d = b + c$ and $c + f = d + e$
 $a + d = b + c$ and $d + e = c + f$
 $(a + d) - (d + e) = (b + c) - (c + f)$
 $(a - e) = b - f$
 $a + f = b + e$
 $(a, b) R (e, f)$

So, R is transitive.

Hence, R is an equivalence relation.

Now, equivalence class containing [(2, 5)] is {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}.

- \mathbf{Q} . **24** Using the definition, prove that the function $f:A\to B$ is invertible if and only if f is both one-one and onto.
- **Sol.** A function $f: X \to Y$ is defined to be invertible, if there exist a function $g = Y \to X$ such that $gof = I_X$ and $fog = I_Y$. The function is called the inverse of f and is denoted by f^{-1} . A function $f = X \rightarrow Y$ is invertible iff f is a bijective function.
- **Q.** 25 Functions $f, g: R \to R$ are defined, respectively, by $f(x) = x^2 + 3x + 1$, q(x) = 2x - 3, find (i) fog (ii) qof (iii) fof (iv) gog
- **Sol.** Given that, $f(x) = x^2 + 3x + 1$, g(x) = 2x 3

(i)
$$fog = f\{g(x)\} = f(2x - 3)$$
$$= (2x - 3)^2 + 3(2x - 3) + 1$$
$$= 4x^2 + 9 - 12x + 6x - 9 + 1 = 4x^2 - 6x + 1$$

(ii)
$$gof = g\{f(x)\} = g(x^2 + 3x + 1)$$
$$= 2(x^2 + 3x + 1) - 3$$
$$= 2x^2 + 6x + 2 - 3 = 2x^2 + 6x - 1$$

(iii)
$$fof = f\{f(x)\} = f(x^2 + 3x + 1)$$

$$= (x^2 + 3x + 1)^2 + 3(x^2 + 3x + 1) + 1$$

$$= x^4 + 9x^2 + 1 + 6x^3 + 6x + 2x^2 + 3x^2 + 9x + 3 + 1$$

$$= x^4 + 6x^3 + 14x^2 + 15x + 5$$

(iv)
$$gog = g\{g(x)\} = g(2x - 3)$$

= $2(2x - 3) - 3$
= $4x - 6 - 3 = 4x - 9$

- \mathbf{Q}_{\bullet} **26** Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
 - (i) $a * b = a b, \forall a, b \in Q$

(ii)
$$a * b = a^2 + b^2$$
, $\forall a, b \in Q$

(iii) a * b = a + ab, $\forall a, b \in Q$

(iv)
$$a * b = (a - b)^2$$
, $\forall a, b \in Q$

Sol. Given that * be the binary operation defined on Q.

(i)
$$a * b = a - b$$
, $\forall a, b \in Q$ and $b * a = b - a$
So, $a * b \neq b * a$

 $[:: b - a \neq a - b]$

Hence, * is not commutative.

(ii)
$$a * b = a^2 + b^2$$

 $b * a = b^2 + a^2$

So, * is commutative.

[since, '+' is on rational is commutative]

(iii)
$$a*b=a+ab$$

$$b*a=b+ab$$
 Clearly,
$$a+ab\neq b+ab$$
 So, * is not commutative.

(iv)
$$a * b = (a - b)^2, \forall a, b \in Q$$

 $b * a = (b - a)^2$
 $\therefore (a - b)^2 = (b - a)^2$

Hence, * is commutative.

- **Q.** 27 If * be binary operation defined on R by a * b = 1 + ab, $\forall a, b \in R$. Then, the operation * is
 - (i) commutative but not associative.
 - (ii) associative but not commutative.
 - (iii) neither commutative nor associative.
 - (iv) both commutative and associative.

Sol. (i) Given that,
$$a*b = 1 + ab, \forall a, b \in R$$
 $a*b = ab + 1 = b*a$

So, * is a commutative binary operation.

Also,
$$a*(b*c) = a*(1+bc) = 1 + a(1+bc)$$

 $a*(b*c) = 1 + a + abc$...(i)
 $(a*b)*c = (1+ab)*c$
 $= 1 + (1+ab)c = 1 + c + abc$...(ii)

From Eqs. (i) and (ii),

$$a * (b * c) \neq (a * b) * c$$

So, * is not associative

Hence, * is commutative but not associative.

Objective Type Questions

 \mathbf{Q} . **28** Let T be the set of all triangles in the Euclidean plane and let a relation R on T be defined as aRb, if a is congruent to b, $\forall a$, $b \in T$.

Then, R is

- (a) reflexive but not transitive
- (b) transitive but not symmetric

(c) equivalence

- (d) None of these
- **Sol.** (c) Consider that aRb, if a is congruent to b, $\forall a, b \in T$.

 $aRa \Rightarrow a \cong a$.

which is true for all $a \in T$

So, R is reflexive. ...(i)

 $aRb \Rightarrow a \cong b$ Let $b \cong a \Rightarrow b \cong a$ \Rightarrow bRa \Rightarrow

So, R is symmetric.

Let aRb and bRc

 $a \cong b$ and $b \cong c$ \Rightarrow $a \cong c \Rightarrow aRc$ \Rightarrow

So, R is transitive. ...(iii)

Hence, R is equivalence relation.

- \mathbf{Q} . $\mathbf{29}$ Consider the non-empty set consisting of children in a family and a relation R defined as aRb, if a is brother of b. Then, R is
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - (d) both symmetric and transitive
- Sol. (b) Given, $aRb \Rightarrow a$ is brother of b
 - $aRa \Rightarrow a$ is brother of a, which is not true. *:*.

So. R is not reflexive.

 $aRb \Rightarrow a$ is brother of b.

This does not mean b is also a brother of a and b can be a sister of a.

Hence, *R* is not symmetric.

 $aRb \Rightarrow a$ is brother of b

 $bRc \Rightarrow b$ is a brother of c.

So, a is brother of c.

Hence, R is transitive.

 \mathbf{Q} . 30 The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are

(c) 3

(d) 5

(a) 1 (b) 2 **Sol.** (d) Given that, $A = \{1, 2, 3\}$

Now, number of equivalence relations as follows

$$R_1 = \{(1, 1), (2, 2), (3, 3)\}$$

$$R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$$

$$R_3 = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$$

$$R_4 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$$

$$R_5 = \{(1, 2, 3) \Leftrightarrow A \times A = A^2\}$$

 \therefore Maximum number of equivalence relation on the set $A = \{1, 2, 3\} = 5$

- \mathbf{Q} . 31 If a relation R on the set {1, 2, 3} be defined by $R = \{(1, 2)\}$, then R is
 - (a) reflexive (b) transitive (c) symmetric (d) None of these
- **Sol.** (b) R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$ It is clear that R is transitive.

...(ii)

Q. 32 Let us define a relation R in R as αRb if $\alpha \geq b$. Then, R is

- (a) an equivalence relation
- (b) reflexive, transitive but not symmetric
- (c) symmetric, transitive but not reflexive
- (d) neither transitive nor reflexive but symmetric

iven that,
$$aRb$$
 if $a \ge b$

$$\Rightarrow$$

$$\Rightarrow$$
 $aRa \Rightarrow a \ge a$ which is true.

Let aRb, $a \ge b$, then $b \ge a$ which is not true R is not symmetric.

But aRb and bR c

 \Rightarrow

 $a \ge b$ and $b \ge c$

a≥c

Hence, R is transitive.

Q. 33 If $A = \{1, 2, 3\}$ and consider the relation

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$$

Then, R is

- (a) reflexive but not symmetric
- (b) reflexive but not transitive
- (c) symmetric and transitive
- (d) neither symmetric nor transitive

and

 $A = \{1, 2, 3\}$ $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$

 $(1, 1), (2, 2), (3, 3) \in R$

Hence, R is reflexive.

$$(1,2) \in R$$
 but $(2,1) \notin R$

Hence, R is not symmetric.

$$(1,2) \in R$$
 and $(2,3) \in R$

$$(1, 3) \in R$$

Hence, R is transitive.

Q. 34 The identity element for the binary operation * defined on $Q - \{0\}$ as

$$a*b = \frac{ab}{2}$$
, $\forall a, b \in Q - \{0\}$ is

(b) 0

(c) 2

(d) None of these

Thinking Process

For given binary operation $*: A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation *, if a * e = a = e * a, $\forall a \in A$.

Sol. (c) Given that,
$$a * b = \frac{ab}{2}$$
, $\forall a, b \in Q - \{0\}$.

Let e be the identity element for *.

$$\therefore \qquad a*e = \frac{ae}{2}$$

$$\Rightarrow$$

$$a = \frac{ae}{2} \implies e = 2$$

 \mathbf{Q} . 35 If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(b) 120

(c) 0

(d) None of these

Sol. (c) We know that, if A and B are two non-empty finite set containing m and n elements respectively, then the number of one-one and onto mapping from A to B is

n! if m = n

0. if $m \neq n$

Given that,

m = 5 and n = 6

 $m \neq n$

Number of mapping = 0

 \mathbf{Q} . 36 If $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$. Then, the number of surjections from A into B is

(a) ${}^{n}P_{2}$

(b) $2^n - 2$

(c) $2^n - 1$

(d) None of these

Sol. (d) Given that, $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$.

> We know that, if A and B are two non-empty finite sets containing m and n elements respectively, then the number of surjection from A into B is

$${}^{n}C_{m} \times m!$$
, if $n \ge m$

 Ω if n < m

Here, m = 2

- .. Number of surjection from A into B is ${}^{n}C_{2} \times 2! = \frac{n!}{2!(n-2)!} \times 2!$ $=\frac{n(n-1)(n-2)!}{2\times 1(n-2)}\times 2!=n^2-n$
- **Q.** 37 If $f: R \to R$ be defined by $f(x) = \frac{1}{x}, \forall x \in R$. Then, f is

(a) one-one

(b) onto

(c) bijective

(d) f is not defined

Thinking Process

In the given function at x = 0, $f(x) = \infty$. So, the function is not define.

Sol. (d) Given that,

 $f(x) = \frac{1}{x}, \ \forall \ x \in R$

For

x = 0

f(x) is not defined.

Hence, f(x) is a not define function.

Q. 38 If $f: R \to R$ be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by

 $g(x) = \frac{x}{x^2 + 1}$. Then, gof is

(a)
$$\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

(b)
$$\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$$

(c)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$

(d)
$$\frac{3x^2}{9x^4 + 30x^2 - 2}$$

$$f(x) = 3x^2 - 5$$
 and $g(x) = \frac{x}{x^2 + 1}$

$$gof = g\{f(x)\} = g(3x^2 - 5)$$

$$= \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 - 30x^2 + 25 + 1}$$
$$= \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

\mathbf{Q} . 39 Which of the following functions from Z into Z are bijections?

(a)
$$f(x) = x^3$$

(b)
$$f(x) = x + 2$$

(c)
$$f(x) = 2x + 1$$
 (d) $f(x) = x^2 + 1$

(d)
$$f(x) = x^2 + 1$$

$$f(x) = x + 2 \implies f(x_1) = f(x_2)$$

$$x_1 + 2 = x_2 + 2 \implies x_1 = x_2$$

$$x = y - 2 \in Z, \forall y \in x$$

Hence, f(x) is one-one and onto.

Q. 40 If $f: R \to R$ be the functions defined by $f(x) = x^3 + 5$, then $f^{-1}(x)$ is

(a)
$$(x+5)^{\frac{1}{3}}$$
 (b) $(x-5)^{\frac{1}{3}}$ (c) $(5-x)^{\frac{1}{3}}$

(b)
$$(x-5)^{-3}$$

(c)
$$(5-x)^{\frac{1}{3}}$$

(d)
$$5 - x$$

$$f(x) = x^3 + 5$$

$$y = x^3 + 5 \implies x^3 = y -$$

$$y = x^{3} + 5$$
 $\Rightarrow x^{3} = y - 5$
 $x = (y - 5)^{\frac{1}{3}}$ $\Rightarrow f(x)^{-1} = (x - 5)^{\frac{1}{3}}$

Q. 41 If $f: A \to B$ and $g: B \to C$ be the bijective functions, then $(gof)^{-1}$ is

(a)
$$f^{-1}$$
og⁻¹

(c)
$$g^{-1}of^{-1}$$

Sol. (a) Given that,
$$f: A \to B$$
 and $g: B \to C$ be the bijective functions. $(gof)^{-1} = f^{-1}og^{-1}$

Q. 42 If
$$f: R - \left\{ \frac{3}{5} \right\} \to R$$
 be defined by $f(x) = \frac{3x + 2}{5x - 3}$, then

(a)
$$f^{-1}(x) = f(x)$$

(b)
$$f^{-1}(x) = -f(x)$$

(c)
$$(fof)x = -x$$

(a)
$$f^{-1}(x) = f(x)$$
 (b) $f^{-1}(x) = -f(x)$ (c) $(f \circ f) x = -x$ (d) $f^{-1}(x) = \frac{1}{19} f(x)$

$$f(x) = \frac{3x+2}{5x-3}$$

$$y = \frac{3x + 2}{5x - 3}$$

$$3x + 2 = 5xy - 3y \implies x(3 - 5y) = -3y - 2$$

 $x = \frac{3y + 2}{5y - 3} \implies f^{-1}(x) = \frac{3x + 2}{5x - 3}$

$$f^{-1}(x) = f(x)$$

Q. 43 If $f:[0, 1] \rightarrow [0, 1]$ be defined by $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1-x, & \text{if } x \text{ is irrational} \end{cases}$

then (fof)x is

(a) constant (b) 1 + x (c) x

(d) None of these

Sol. (c) Given that, $f: [0, 1] \rightarrow [0, 1]$ be defined by

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$$

 $(f \circ f) x = f(f(x)) = x$

Q. 44 If $f:[2, \infty) \to R$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is

(a) R

(b) $[1, \infty)$

(c) $[4, \infty)$

 $(d) [5, \infty)$

Thinking Process

Range of $f = \{y \in Y : y = f(x) \text{ for some in } X\}$

 $f(x) = x^2 - 4x + 5$ **Sol.** (b) Given that,

> $y = x^2 - 4x + 5$ Let

 $y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$ $(x-2)^2 = y-1 \implies x-2 = \sqrt{y-1}$

 $x = 2 + \sqrt{y - 1}$ $y - 1 \ge 0, y \ge 1$

Range = $[1, \infty)$

Q. 45 If $f: N \to R$ be the function defined by $f(x) = \frac{2x-1}{2}$ and $g: Q \to R$

be another function defined by g(x) = x + 2. Then, $(gof)^{\frac{3}{2}}$ is

(a) 1 (b) 1

(c)
$$\frac{7}{2}$$

(d) None of these

Sol. (*d*) Given that, $f(x) = \frac{2x-1}{2}$ and g(x) = x + 2

$$(gof)\frac{3}{2} = g\left[f\left(\frac{3}{2}\right)\right] = g\left(\frac{2 \times \frac{3}{2} - 1}{2}\right)$$
$$= g(1) = 1 + 2 = 3$$

Q. 46 If
$$f: R \to R$$
 be defined by $f(x) = \begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$

Then,
$$f(-1) + f(2) + f(4)$$
 is

(a) 9

(2x : x > 3)

Sol. (a) Given that,

$$f(x) = \begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$$

$$f(-1) + f(2) + f(4) = 3(-1) + (2)^{2} + 2 \times 4$$

= -3 + 4 + 8 = 9

Q. 47 If $f: R \to R$ be given by $f(x) = \tan x$, then $f^{-1}(1)$ is

(a)
$$\frac{\pi}{4}$$

(b)
$$\left\{ n\pi + \frac{\pi}{4} : n \in Z \right\}$$

(c) Does not exist

(d) None of these

Sol. (a) Given that,

$$f(x) = \tan x$$

Let

$$y = \tan x \implies x = \tan^{-1} y$$

 $f^{-1}(x) = \tan^{-1} x \implies f^{-1}(1) = \tan^{-1} 1$

 \Rightarrow

$$= \tan^{-1} \tan \frac{\pi}{4} = \frac{\pi}{4}$$

 $\left[\because \tan\frac{\pi}{4} = 1\right]$

(d) None of these

Fillers

Q. 48 Let the relation *R* be defined in *N* by aRb, if 2a + 3b = 30. Then, $R = \dots$

Sol. Given that,

$$2a + 3b = 30$$
$$3b = 30 - 2a$$
$$b = \frac{30 - 2a}{3}$$

For

$$a = 3, b = 8$$

 $a = 6, b = 6$

a = 9, b = 4

$$a = 12, b = 2$$

 $R = \{(3, 8), (6, 6), (9, 4), (12, 2)\}$

Q. 49 If the relation *R* be defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 8\}$. Then, *R* is given by

Sol. Given,

$$A = \{1, 2, 3, 4, 5\},\$$

$$R = \{(a, b): |a^2 - b^2| < 8\}$$

$$R = \{ (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 3), (3, 4), (4, 4), (5, 5) \}$$

Q. 50 If
$$f = \{(1, 2), (3, 5), (4, 1)\}$$
 and $g = \{(2, 3), (5, 1), (1, 3)\}$, then $gof = \dots$ and $fog = \dots$

Sol. Given that,
$$f = \{(1,2), (3,5), (4,1)\} \text{ and } g = \{(2,3), (5,1), (1,3)\}$$

$$gof(1) = g\{f(1)\} = g(2) = 3$$

$$gof(3) = g\{f(3)\} = g(5) = 1$$

$$gof(4) = g\{f(4)\} = g(1) = 3$$

$$gof = \{(1,3), (3,1), (4,3)\}$$
Now,
$$fog(2) = f\{g(2)\} = f(3) = 5$$

$$fog(5) = f\{g(5)\} = f(1) = 2$$

$$fog(1) = f\{g(1)\} = f(3) = 5$$

Q. 51 If
$$f: R \to R$$
 be defined by $f(x) = \frac{x}{\sqrt{1+x^2}}$, then $(fofof)(x) = \dots$

 $fog = \{(2, 5), (5, 2), (1, 5)\}$

Sol. Given that,
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

$$(fofof)(x) = f[f\{f(x)\}]$$

$$= f\left[f\left(\frac{x}{\sqrt{1+x^2}}\right)\right] = f\left(\frac{x}{\sqrt{1+x^2}}\right)$$

$$= f\left[\frac{x\sqrt{1+x^2}}{\sqrt{1+x^2}(\sqrt{2x^2}+1)}\right] = f\left(\frac{x}{\sqrt{1+2x^2}}\right)$$

$$= \frac{x}{\sqrt{1+2x^2}}$$

$$= \frac{x}{\sqrt{1+2x^2}} = \frac{x\sqrt{1+2x^2}}{\sqrt{1+2x^2}\sqrt{1+3x^2}}$$

$$= \frac{x}{\sqrt{1+3x^2}} = \frac{x}{\sqrt{3x^2+1}}$$

Q. 52 If
$$f(x) = [4 - (x - 7)^3]$$
, then $f^{-1}(x) = \dots$

Sol. Given that,
$$f(x) = \{4 - (x - 7)^3\}$$
Let
$$y = [4 - (x - 7)^3]$$

$$(x - 7)^3 = 4 - y$$

$$(x - 7) = (4 - y)^{1/3}$$

$$\Rightarrow x = 7 + (4 - y)^{1/3}$$

$$f^{-1}(x) = 7 + (4 - x)^{1/3}$$

True/False

- **Q.** 53 Let $R = \{(3, 1), (1, 3), (3, 3)\}$ be a relation defined on the set $A = \{1, 2, 3\}$. Then, R is symmetric, transitive but not reflexive.
- Sol. False

Given that, $R = \{(3, 1), (1, 3), (3, 3)\}$ be defined on the set $A = \{1, 2, 3\}$

 $(1, 1) \notin R$

So. R is not reflexive. $(3, 1) \in R, (1, 3) \in R$

Hence, R is symmetric.

 $(3, 1) \in R, (1, 3) \in R$ Since.

But $(1, 1) \notin R$

Hence. R is not transitive.

- **Q. 54** If $f: R \to R$ be the function defined by $f(x) = \sin(3x + 2) \ \forall \ x \in R$. Then, f is invertible.
- Sol. False

Given that, $f(x) = \sin(3x + 2)$, $\forall x \in R$ is not one-one function for all $x \in R$.

So, *f* is not invertible.

- \mathbf{Q} . **55** Every relation which is symmetric and transitive is also reflexive.
- Sol. False

Let R be a relation defined by

 $R = \{(1, 2), (2, 1), (1, 1), (2, 2)\}$ on the set $A = \{1, 2, 3\}$

It is clear that $(3, 3) \notin R$. So, it is not reflexive.

- \mathbf{O} . **56** An integer m is said to be related to another integer n, if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.
- Sol. False

The given relation is reflexive and transitive but not symmetric.

- \mathbf{Q}_{\bullet} 57 If $A = \{0, 1\}$ and N be the set of natural numbers. Then, the mapping $f: N \to A$ defined by f(2n-1) = 0, f(2n) = 1, $\forall n \in N$, is onto.
- Sol. True

Given,

$$A = \{0, 1\}$$

 $f(2n - 1) = 0, f(2n) = 1, \forall n \in \mathbb{N}$

So, the mapping $f: N \to A$ is onto.

- **Q.** 58 The relation R on the set $A = \{1, 2, 3\}$ defined as $R = \{(1, 1), (1, 2), (2, 3)\}$ 1), (3, 3)} is reflexive, symmetric and transitive.
- Sol. False

Given that.

$$R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$$

 $(2, 2) \notin R$

So, R is not reflexive.

Q. 59 The composition of function is commutative.

Sol. False
Let
$$f(x) = x^2$$

and $g(x) = x + 1$
 $fog(x) = f \{g(x)\} = f(x + 1)$
 $= (x + 1)^2 = x^2 + 2x + 1$
 $gof(x) = g\{f(x)\} = g(x^2) = x^2 + 1$
 $fog(x) \neq gof(x)$

Q. 60 The composition of function is associative.

Sol. True

Let
$$f(x) = x, g(x) = x + 1$$
and $h(x) = 2x - 1$
Then, $fo\{goh(x)\} = f[g\{h(x)\}]$
 $= f\{g(2x - 1)\}$
 $= f(2x) = 2x$
 \therefore $(fog) oh(x) = (fog)\{h(x)\}$
 $= (fog)(2x - 1)$
 $= f\{g(2x - 1)\}$
 $= f(2x - 1 + 1)$
 $= f(2x) = 2x$

- Q. 61 Every function is invertible.
- **Sol.** *False*Only bijective functions are invertible.
- Q. 62 A binary operation on a set has always the identity element.
- Sol. False

'+' is a binary operation on the set N but it has no identity element.

